Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Free Radic Biol Med ; 158: 20-31, 2020 10.
Article En | MEDLINE | ID: mdl-32544425

The organic selenium compound diphenyl diselenide (DD) has been recognized as an antioxidant and neuroprotective agent, exerting an anti-hyperglycemic effect in experimental models of diabetes. However, the precise mechanisms involved in the protection are unclear. Using the zebrafish (Danio rerio) as a model organism, here we investigated biomarkers underlying the protective effects of DD against hyperglycemia, targeting in a transcriptional approach the redox and insulin-signaling pathway. Fish were fed on a diet containing DD (3 mg/kg) for 74 days. In the last 14 days, they were exposed to a 111 mM glucose solution to induce a hyperglycemic state. DD reduced blood glucose levels as well as normalized the brain mRNA transcription of four insulin receptors-coding genes (Insra1, Insra2, Insrb1, Insrb2), which were down-regulated by glucose. DD alone caused an up-regulation of relative mRNA transcription in both Insra receptors and glucose transporter 3 genes. DD counteracted hyperglycemia-induced lipid peroxidation, protein and thiol depletion. Along with the decreased activity of antioxidant enzymes SOD and GPx, the brain of hyperglycemic fish presented a reduction in mRNA transcription of FoxO3A, FoxO3B, Nrf2, GPx3A, SOD1, and SOD2 genes. Besides normalizing the transcriptional levels, DD caused an up-regulation of relative mRNAs that encode Nrf2, FoxO1A, FOXO3A, GPx4A, PTP1B, AKT and SelP. Collectively, our findings suggest that the antioxidant and anti-hyperglycemic actions of DD in a zebrafish diabetes model are likely associated with the regulation of the oxidative stress resistance and the insulin-signaling pathway and that could be related to the modulation at mRNA level of two important transcription factors, Nrf2 and FoxO.


Antioxidants , Zebrafish , Animals , Antioxidants/pharmacology , Benzene Derivatives , Hypoglycemic Agents , Insulin , Organoselenium Compounds , Oxidation-Reduction , Oxidative Stress , Signal Transduction
2.
Chem Biol Interact ; 315: 108867, 2020 Jan 05.
Article En | MEDLINE | ID: mdl-31672467

Methylmercury (MeHg) and Ethylmercury (EtHg) are toxic to the central nervous system. Human exposure to MeHg and EtHg results mainly from the consumption of contaminated fish and thimerosal-containing vaccines, respectively. The mechanisms underlying the toxicity of MeHg and EtHg are still elusive. Here, we compared the toxic effects of MeHg and EtHg in Saccharomyces cerevisiae (S. cerevisiae) emphasizing the involvement of oxidative stress and the identification of molecular targets from antioxidant pathways. Wild type and mutant strains with deleted genes for antioxidant defenses, namely: γ-glutamylcysteine synthetase, glutathione peroxidase, catalase, superoxide dismutase, mitochondrial peroxiredoxin, cytoplasmic thioredoxin, and redox transcription factor Yap1 were used to identify potential pathways and proteins from cell redox system targeted by MeHg and EtHg. MeHg and EtHg inhibited cell growth, decreased membrane integrity, and increased the granularity and production of reactive species (RS) in wild type yeast. The mutants were predominantly less tolerant of mercurial than wild type yeast. But, as the wild strain, mutants exhibited higher tolerance to MeHg than EtHg. Our results indicate the involvement of oxidative stress in the cytotoxicity of MeHg and EtHg and reinforce S. cerevisiae as a suitable model to explore the mechanisms of action of electrophilic toxicants.


Antioxidants/pharmacology , Ethylmercury Compounds/pharmacology , Methylmercury Compounds/pharmacology , Oxidative Stress/drug effects , Saccharomyces cerevisiae/drug effects , Oxidation-Reduction/drug effects , Saccharomyces cerevisiae/metabolism
3.
Mol Neurobiol ; 56(1): 583-594, 2019 Jan.
Article En | MEDLINE | ID: mdl-29748917

Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures, which culminate in various neurobehavioral and neurochemical changes. Taurine (TAU) is an amino sulfonic acid which acts an endogenous inhibitory neuromodulator. Moreover, TAU displays intrinsic antioxidant activity, contributing to its beneficial actions in the CNS. Here, we evaluated whether TAU pretreatment protects from pentylenetetrazole (PTZ)-induced behavioral alterations and oxidative stress-related parameters in zebrafish brain tissue. Fish were pretreated with 42, 150, and 400 mg/L TAU (40 min) and further exposed to 10 mM PTZ (20 min) to analyze the seizure-like behaviors. As a positive control, another group was previously treated with 75 µM diazepam (DZP). Afterwards, biochemical experiments were performed. All TAU concentrations tested decreased seizure intensity in the first 150 s. Importantly, 150 mg/L TAU attenuated seizure-like behavioral scores, decreased seizure intensity, reduced the frequency of clonic-like seizures (score 4), and increased the latency to score 4. TAU (150 mg/L) also prevented oxidative stress in PTZ-challenged fish by decreasing lipid peroxidation and protein carbonylation and preventing changes on nonprotein thiol levels. No significant changes were observed in MTT assay and LDH activity. Differently than observed in DZP group, TAU did not affect the overall swimming activity of fish, suggesting different mechanisms of action. Collectively, we show that TAU attenuates PTZ-induced seizure-like behaviors and brain oxidative stress in zebrafish, suggesting the involvement of antioxidant mechanisms in neuroprotection.


Behavior, Animal/drug effects , Brain Chemistry/drug effects , Neuroprotective Agents/pharmacology , Taurine/pharmacology , Zebrafish/metabolism , Animals , Antioxidants , Brain/drug effects , Brain/enzymology , Brain/pathology , Cell Death/drug effects , Cell Survival/drug effects , Diazepam/pharmacology , Female , Male , Neurochemistry , Oxidative Stress/drug effects , Pentylenetetrazole , Phenotype , Protein Carbonylation/drug effects , Seizures/pathology , Swimming , Thiobarbituric Acid Reactive Substances/metabolism
4.
Article En | MEDLINE | ID: mdl-29723547

Diabetes mellitus (DM) is a chronic metabolic disease that may comorbid with various psychiatric disorders, such as anxiety and depression. The search for effective therapeutics to alleviate hyperglycemia and complications resulting from DM is continuous. Here we investigate the effects of diphenyl diselenide (DD), an organoselenium compound with several pharmacological properties, in a zebrafish model of hyperglycemia. Fish were fed for 74 days with a diet containing 3 mg/Kg DD, a concentration chosen after experiments based in a dose-response curve (DD 1, 2 and 3 mg/Kg) that did not cause overt toxicity (mortality, weight loss and neurobehavioral deficits). In the last 14 days of the experimental period, fish were concomitantly exposed to a glucose solution (111 mM). Afterwards, blood glucose levels, brain selenium (Se) content, and behavioral analysis aiming to assess anxiety-like behaviors and locomotor/exploratory activities were performed. In the novel tank diving test, glucose decreased vertical exploration and fish spent less time in the lit area when tested in the light-dark test, suggesting increased anxiety-like behavior. Moreover, DD decreased blood glucose levels in hyperglycemic fish as well as prevented the development of anxiety-related symptoms. DD diet alone did not change glycemia and behavioral parameters, but increased Se levels in the brain without affecting the cellular viability. Collectively, our findings highlight the growing utility of this zebrafish hyperglycemia model as a valuable strategy for further research in DM field and neuroprotective approaches.


Anxiety/etiology , Benzene Derivatives/administration & dosage , Hyperglycemia/complications , Hyperglycemia/psychology , Organoselenium Compounds/administration & dosage , Animals , Anxiety/diet therapy , Behavior, Animal/physiology , Blood Glucose/physiology , Brain/metabolism , Diet , Disease Models, Animal , Female , Glucose/administration & dosage , Hyperglycemia/diet therapy , Male , Selenium/metabolism , Zebrafish
5.
J Ethnopharmacol ; 210: 69-79, 2018 Jan 10.
Article En | MEDLINE | ID: mdl-28844679

ETNOPHARMACOLOGICAL RELEVANCE: Syzygium cumini (L.) Skeels is a plant widely used in folk medicine to treat diabetes mellitus (DM). The tea from its leaves is frequently used by diabetics for lowering hyperglycemia. There is a close relationship between DM and atherosclerosis, a chronic immuno-inflammatory disease, were the early stages encompass oxidative and glycative modifications in the structure of low density lipoprotein (LDL). AIM OF THIS STUDY: To investigate the potential protective effects of aqueous-leaf extract from Syzygium cumini (S.cExt) against CuSO4-induced oxidation and methylglyoxal (MG)-induced glycation of human LDL in vitro. MATERIALS AND METHODS: LDL oxidative changes were evaluated by measuring conjugated dienes (CD) formation, thiobarbituric acid reactive substances (TBARS) levels, quenching of tryptophan (Trp) fluorescence and structural modifications in LDL particle. In LDL glycated by MG (glyLDL), we determined the levels of fluorescent advanced glycation end products (AGEs) and mobility by agarose gel electrophoresis. RESULTS: S.cExt blocked oxidative events induced by CuSO4 in human LDL, plasma and serum. Fourier transform infrared spectroscopy (FT-IR) revealed that specific regions of apoB100 were oxidized by CuSO4 in human LDL and that S.cExt reduced these oxidations. Unlike, the increased AGEs levels and eletrophoretic mobility observed in LDL MG-glycated were not modified by S.cExt. CONCLUSION: The findings herein indicate that S.cExt could be tested in atherogenesis models as potential protective agent against LDL oxidation.


Lipoproteins, LDL/metabolism , Plant Extracts/pharmacology , Syzygium/chemistry , Apolipoprotein B-100/metabolism , Copper Sulfate/administration & dosage , Electrophoresis, Agar Gel , Glycation End Products, Advanced/metabolism , Humans , Medicine, Traditional , Oxidation-Reduction , Plant Leaves , Spectroscopy, Fourier Transform Infrared , Thiobarbituric Acid Reactive Substances/metabolism
6.
EXCLI J ; 13: 323-30, 2014.
Article En | MEDLINE | ID: mdl-26417263

Ethnobotanical claims regarding Kigelia africana reported antiulcer properties as part of its medicinal application. In this work, aqueous leaf extract from K. africana was investigated for its phytochemical constituents and antiulcer potential against ethanol-induced ulcer in rats. The participation of oxidative stress on ethanol-induced ulcer and the potential protective antioxidant activity of K. africana extracts were investigated by determining vitamin C and thiobarbituric acid reactive species (TBARS) contents in the gastric mucosa of rats. The HPLC analysis showed the presence of gallic acid, chlorogenic acid, caffeic acid and also the flavonoids rutin, quercetin and kaempferol in the aqueous plant extract. Oral treatment with K. africana extract (1.75; 3.5; 7 and 14 mg/kg) one hour after ulcer induction with ethanol decreased in a dose dependent manner the ulcer index. Ethanol increased significantly stomachal TBARS levels and decreased vitamin C content when compared to the control animals. K. africana blunted the ethanol-induced oxidative stress and restored vitamin C content to the control levels. The present results indicate that the aqueous leaf extract from K. africana possesses antiulcer potential. The presence of flavonoids in plant extract suggests that its antiulcerogenic potential is associated with antioxidant activity. Of particular therapeutic potential, K. africana was effective against ethanol even after the induction of ulcer, indicating that it can have protective and curative effects against gastric lesion.

...